FACT++  1.0
double eraS06 ( double  date1,
double  date2,
double  x,
double  y 
)

Definition at line 3 of file s06.c.

References eraFad03(), eraFae03(), eraFaf03(), eraFal03(), eraFalp03(), eraFaom03(), eraFapa03(), eraFave03(), ERFA_DAS2R, ERFA_DJ00, ERFA_DJC, i, and t.

Referenced by eraApci13(), eraApco13(), eraC2i06a(), eraEo06a(), eraGst06(), eraS06a(), eraXys06a(), and t_s06().

79 {
80 /* Time since J2000.0, in Julian centuries */
81  double t;
82 
83 /* Miscellaneous */
84  int i, j;
85  double a, w0, w1, w2, w3, w4, w5;
86 
87 /* Fundamental arguments */
88  double fa[8];
89 
90 /* Returned value */
91  double s;
92 
93 /* --------------------- */
94 /* The series for s+XY/2 */
95 /* --------------------- */
96 
97  typedef struct {
98  int nfa[8]; /* coefficients of l,l',F,D,Om,LVe,LE,pA */
99  double s, c; /* sine and cosine coefficients */
100  } TERM;
101 
102 /* Polynomial coefficients */
103  static const double sp[] = {
104 
105  /* 1-6 */
106  94.00e-6,
107  3808.65e-6,
108  -122.68e-6,
109  -72574.11e-6,
110  27.98e-6,
111  15.62e-6
112  };
113 
114 /* Terms of order t^0 */
115  static const TERM s0[] = {
116 
117  /* 1-10 */
118  {{ 0, 0, 0, 0, 1, 0, 0, 0}, -2640.73e-6, 0.39e-6 },
119  {{ 0, 0, 0, 0, 2, 0, 0, 0}, -63.53e-6, 0.02e-6 },
120  {{ 0, 0, 2, -2, 3, 0, 0, 0}, -11.75e-6, -0.01e-6 },
121  {{ 0, 0, 2, -2, 1, 0, 0, 0}, -11.21e-6, -0.01e-6 },
122  {{ 0, 0, 2, -2, 2, 0, 0, 0}, 4.57e-6, 0.00e-6 },
123  {{ 0, 0, 2, 0, 3, 0, 0, 0}, -2.02e-6, 0.00e-6 },
124  {{ 0, 0, 2, 0, 1, 0, 0, 0}, -1.98e-6, 0.00e-6 },
125  {{ 0, 0, 0, 0, 3, 0, 0, 0}, 1.72e-6, 0.00e-6 },
126  {{ 0, 1, 0, 0, 1, 0, 0, 0}, 1.41e-6, 0.01e-6 },
127  {{ 0, 1, 0, 0, -1, 0, 0, 0}, 1.26e-6, 0.01e-6 },
128 
129  /* 11-20 */
130  {{ 1, 0, 0, 0, -1, 0, 0, 0}, 0.63e-6, 0.00e-6 },
131  {{ 1, 0, 0, 0, 1, 0, 0, 0}, 0.63e-6, 0.00e-6 },
132  {{ 0, 1, 2, -2, 3, 0, 0, 0}, -0.46e-6, 0.00e-6 },
133  {{ 0, 1, 2, -2, 1, 0, 0, 0}, -0.45e-6, 0.00e-6 },
134  {{ 0, 0, 4, -4, 4, 0, 0, 0}, -0.36e-6, 0.00e-6 },
135  {{ 0, 0, 1, -1, 1, -8, 12, 0}, 0.24e-6, 0.12e-6 },
136  {{ 0, 0, 2, 0, 0, 0, 0, 0}, -0.32e-6, 0.00e-6 },
137  {{ 0, 0, 2, 0, 2, 0, 0, 0}, -0.28e-6, 0.00e-6 },
138  {{ 1, 0, 2, 0, 3, 0, 0, 0}, -0.27e-6, 0.00e-6 },
139  {{ 1, 0, 2, 0, 1, 0, 0, 0}, -0.26e-6, 0.00e-6 },
140 
141  /* 21-30 */
142  {{ 0, 0, 2, -2, 0, 0, 0, 0}, 0.21e-6, 0.00e-6 },
143  {{ 0, 1, -2, 2, -3, 0, 0, 0}, -0.19e-6, 0.00e-6 },
144  {{ 0, 1, -2, 2, -1, 0, 0, 0}, -0.18e-6, 0.00e-6 },
145  {{ 0, 0, 0, 0, 0, 8,-13, -1}, 0.10e-6, -0.05e-6 },
146  {{ 0, 0, 0, 2, 0, 0, 0, 0}, -0.15e-6, 0.00e-6 },
147  {{ 2, 0, -2, 0, -1, 0, 0, 0}, 0.14e-6, 0.00e-6 },
148  {{ 0, 1, 2, -2, 2, 0, 0, 0}, 0.14e-6, 0.00e-6 },
149  {{ 1, 0, 0, -2, 1, 0, 0, 0}, -0.14e-6, 0.00e-6 },
150  {{ 1, 0, 0, -2, -1, 0, 0, 0}, -0.14e-6, 0.00e-6 },
151  {{ 0, 0, 4, -2, 4, 0, 0, 0}, -0.13e-6, 0.00e-6 },
152 
153  /* 31-33 */
154  {{ 0, 0, 2, -2, 4, 0, 0, 0}, 0.11e-6, 0.00e-6 },
155  {{ 1, 0, -2, 0, -3, 0, 0, 0}, -0.11e-6, 0.00e-6 },
156  {{ 1, 0, -2, 0, -1, 0, 0, 0}, -0.11e-6, 0.00e-6 }
157  };
158 
159 /* Terms of order t^1 */
160  static const TERM s1[] = {
161 
162  /* 1 - 3 */
163  {{ 0, 0, 0, 0, 2, 0, 0, 0}, -0.07e-6, 3.57e-6 },
164  {{ 0, 0, 0, 0, 1, 0, 0, 0}, 1.73e-6, -0.03e-6 },
165  {{ 0, 0, 2, -2, 3, 0, 0, 0}, 0.00e-6, 0.48e-6 }
166  };
167 
168 /* Terms of order t^2 */
169  static const TERM s2[] = {
170 
171  /* 1-10 */
172  {{ 0, 0, 0, 0, 1, 0, 0, 0}, 743.52e-6, -0.17e-6 },
173  {{ 0, 0, 2, -2, 2, 0, 0, 0}, 56.91e-6, 0.06e-6 },
174  {{ 0, 0, 2, 0, 2, 0, 0, 0}, 9.84e-6, -0.01e-6 },
175  {{ 0, 0, 0, 0, 2, 0, 0, 0}, -8.85e-6, 0.01e-6 },
176  {{ 0, 1, 0, 0, 0, 0, 0, 0}, -6.38e-6, -0.05e-6 },
177  {{ 1, 0, 0, 0, 0, 0, 0, 0}, -3.07e-6, 0.00e-6 },
178  {{ 0, 1, 2, -2, 2, 0, 0, 0}, 2.23e-6, 0.00e-6 },
179  {{ 0, 0, 2, 0, 1, 0, 0, 0}, 1.67e-6, 0.00e-6 },
180  {{ 1, 0, 2, 0, 2, 0, 0, 0}, 1.30e-6, 0.00e-6 },
181  {{ 0, 1, -2, 2, -2, 0, 0, 0}, 0.93e-6, 0.00e-6 },
182 
183  /* 11-20 */
184  {{ 1, 0, 0, -2, 0, 0, 0, 0}, 0.68e-6, 0.00e-6 },
185  {{ 0, 0, 2, -2, 1, 0, 0, 0}, -0.55e-6, 0.00e-6 },
186  {{ 1, 0, -2, 0, -2, 0, 0, 0}, 0.53e-6, 0.00e-6 },
187  {{ 0, 0, 0, 2, 0, 0, 0, 0}, -0.27e-6, 0.00e-6 },
188  {{ 1, 0, 0, 0, 1, 0, 0, 0}, -0.27e-6, 0.00e-6 },
189  {{ 1, 0, -2, -2, -2, 0, 0, 0}, -0.26e-6, 0.00e-6 },
190  {{ 1, 0, 0, 0, -1, 0, 0, 0}, -0.25e-6, 0.00e-6 },
191  {{ 1, 0, 2, 0, 1, 0, 0, 0}, 0.22e-6, 0.00e-6 },
192  {{ 2, 0, 0, -2, 0, 0, 0, 0}, -0.21e-6, 0.00e-6 },
193  {{ 2, 0, -2, 0, -1, 0, 0, 0}, 0.20e-6, 0.00e-6 },
194 
195  /* 21-25 */
196  {{ 0, 0, 2, 2, 2, 0, 0, 0}, 0.17e-6, 0.00e-6 },
197  {{ 2, 0, 2, 0, 2, 0, 0, 0}, 0.13e-6, 0.00e-6 },
198  {{ 2, 0, 0, 0, 0, 0, 0, 0}, -0.13e-6, 0.00e-6 },
199  {{ 1, 0, 2, -2, 2, 0, 0, 0}, -0.12e-6, 0.00e-6 },
200  {{ 0, 0, 2, 0, 0, 0, 0, 0}, -0.11e-6, 0.00e-6 }
201  };
202 
203 /* Terms of order t^3 */
204  static const TERM s3[] = {
205 
206  /* 1-4 */
207  {{ 0, 0, 0, 0, 1, 0, 0, 0}, 0.30e-6, -23.42e-6 },
208  {{ 0, 0, 2, -2, 2, 0, 0, 0}, -0.03e-6, -1.46e-6 },
209  {{ 0, 0, 2, 0, 2, 0, 0, 0}, -0.01e-6, -0.25e-6 },
210  {{ 0, 0, 0, 0, 2, 0, 0, 0}, 0.00e-6, 0.23e-6 }
211  };
212 
213 /* Terms of order t^4 */
214  static const TERM s4[] = {
215 
216  /* 1-1 */
217  {{ 0, 0, 0, 0, 1, 0, 0, 0}, -0.26e-6, -0.01e-6 }
218  };
219 
220 /* Number of terms in the series */
221  static const int NS0 = (int) (sizeof s0 / sizeof (TERM));
222  static const int NS1 = (int) (sizeof s1 / sizeof (TERM));
223  static const int NS2 = (int) (sizeof s2 / sizeof (TERM));
224  static const int NS3 = (int) (sizeof s3 / sizeof (TERM));
225  static const int NS4 = (int) (sizeof s4 / sizeof (TERM));
226 
227 /*--------------------------------------------------------------------*/
228 
229 /* Interval between fundamental epoch J2000.0 and current date (JC). */
230  t = ((date1 - ERFA_DJ00) + date2) / ERFA_DJC;
231 
232 /* Fundamental Arguments (from IERS Conventions 2003) */
233 
234 /* Mean anomaly of the Moon. */
235  fa[0] = eraFal03(t);
236 
237 /* Mean anomaly of the Sun. */
238  fa[1] = eraFalp03(t);
239 
240 /* Mean longitude of the Moon minus that of the ascending node. */
241  fa[2] = eraFaf03(t);
242 
243 /* Mean elongation of the Moon from the Sun. */
244  fa[3] = eraFad03(t);
245 
246 /* Mean longitude of the ascending node of the Moon. */
247  fa[4] = eraFaom03(t);
248 
249 /* Mean longitude of Venus. */
250  fa[5] = eraFave03(t);
251 
252 /* Mean longitude of Earth. */
253  fa[6] = eraFae03(t);
254 
255 /* General precession in longitude. */
256  fa[7] = eraFapa03(t);
257 
258 /* Evaluate s. */
259  w0 = sp[0];
260  w1 = sp[1];
261  w2 = sp[2];
262  w3 = sp[3];
263  w4 = sp[4];
264  w5 = sp[5];
265 
266  for (i = NS0-1; i >= 0; i--) {
267  a = 0.0;
268  for (j = 0; j < 8; j++) {
269  a += (double)s0[i].nfa[j] * fa[j];
270  }
271  w0 += s0[i].s * sin(a) + s0[i].c * cos(a);
272  }
273 
274  for (i = NS1-1; i >= 0; i--) {
275  a = 0.0;
276  for (j = 0; j < 8; j++) {
277  a += (double)s1[i].nfa[j] * fa[j];
278  }
279  w1 += s1[i].s * sin(a) + s1[i].c * cos(a);
280  }
281 
282  for (i = NS2-1; i >= 0; i--) {
283  a = 0.0;
284  for (j = 0; j < 8; j++) {
285  a += (double)s2[i].nfa[j] * fa[j];
286  }
287  w2 += s2[i].s * sin(a) + s2[i].c * cos(a);
288  }
289 
290  for (i = NS3-1; i >= 0; i--) {
291  a = 0.0;
292  for (j = 0; j < 8; j++) {
293  a += (double)s3[i].nfa[j] * fa[j];
294  }
295  w3 += s3[i].s * sin(a) + s3[i].c * cos(a);
296  }
297 
298  for (i = NS4-1; i >= 0; i--) {
299  a = 0.0;
300  for (j = 0; j < 8; j++) {
301  a += (double)s4[i].nfa[j] * fa[j];
302  }
303  w4 += s4[i].s * sin(a) + s4[i].c * cos(a);
304  }
305 
306  s = (w0 +
307  (w1 +
308  (w2 +
309  (w3 +
310  (w4 +
311  w5 * t) * t) * t) * t) * t) * ERFA_DAS2R - x*y/2.0;
312 
313  return s;
314 
315 }
#define ERFA_DJ00
Definition: erfam.h:87
double eraFae03(double t)
Definition: fae03.c:3
double eraFapa03(double t)
Definition: fapa03.c:3
double eraFal03(double t)
Definition: fal03.c:3
int i
Definition: db_dim_client.c:21
#define ERFA_DAS2R
Definition: erfam.h:60
double eraFaom03(double t)
Definition: faom03.c:3
double eraFad03(double t)
Definition: fad03.c:3
double eraFaf03(double t)
Definition: faf03.c:3
double eraFalp03(double t)
Definition: falp03.c:3
#define ERFA_DJC
Definition: erfam.h:81
TT t
Definition: test_client.c:26
double eraFave03(double t)
Definition: fave03.c:3

+ Here is the call graph for this function:

+ Here is the caller graph for this function: