FACT++  1.0
apco13.c
Go to the documentation of this file.
1 #include "erfa.h"
2 
3 int eraApco13(double utc1, double utc2, double dut1,
4  double elong, double phi, double hm, double xp, double yp,
5  double phpa, double tc, double rh, double wl,
6  eraASTROM *astrom, double *eo)
7 /*
8 ** - - - - - - - - - -
9 ** e r a A p c o 1 3
10 ** - - - - - - - - - -
11 **
12 ** For a terrestrial observer, prepare star-independent astrometry
13 ** parameters for transformations between ICRS and observed
14 ** coordinates. The caller supplies UTC, site coordinates, ambient air
15 ** conditions and observing wavelength, and ERFA models are used to
16 ** obtain the Earth ephemeris, CIP/CIO and refraction constants.
17 **
18 ** The parameters produced by this function are required in the
19 ** parallax, light deflection, aberration, and bias-precession-nutation
20 ** parts of the ICRS/CIRS transformations.
21 **
22 ** Given:
23 ** utc1 double UTC as a 2-part...
24 ** utc2 double ...quasi Julian Date (Notes 1,2)
25 ** dut1 double UT1-UTC (seconds, Note 3)
26 ** elong double longitude (radians, east +ve, Note 4)
27 ** phi double latitude (geodetic, radians, Note 4)
28 ** hm double height above ellipsoid (m, geodetic, Notes 4,6)
29 ** xp,yp double polar motion coordinates (radians, Note 5)
30 ** phpa double pressure at the observer (hPa = mB, Note 6)
31 ** tc double ambient temperature at the observer (deg C)
32 ** rh double relative humidity at the observer (range 0-1)
33 ** wl double wavelength (micrometers, Note 7)
34 **
35 ** Returned:
36 ** astrom eraASTROM* star-independent astrometry parameters:
37 ** pmt double PM time interval (SSB, Julian years)
38 ** eb double[3] SSB to observer (vector, au)
39 ** eh double[3] Sun to observer (unit vector)
40 ** em double distance from Sun to observer (au)
41 ** v double[3] barycentric observer velocity (vector, c)
42 ** bm1 double sqrt(1-|v|^2): reciprocal of Lorenz factor
43 ** bpn double[3][3] bias-precession-nutation matrix
44 ** along double longitude + s' (radians)
45 ** xpl double polar motion xp wrt local meridian (radians)
46 ** ypl double polar motion yp wrt local meridian (radians)
47 ** sphi double sine of geodetic latitude
48 ** cphi double cosine of geodetic latitude
49 ** diurab double magnitude of diurnal aberration vector
50 ** eral double "local" Earth rotation angle (radians)
51 ** refa double refraction constant A (radians)
52 ** refb double refraction constant B (radians)
53 ** eo double* equation of the origins (ERA-GST)
54 **
55 ** Returned (function value):
56 ** int status: +1 = dubious year (Note 2)
57 ** 0 = OK
58 ** -1 = unacceptable date
59 **
60 ** Notes:
61 **
62 ** 1) utc1+utc2 is quasi Julian Date (see Note 2), apportioned in any
63 ** convenient way between the two arguments, for example where utc1
64 ** is the Julian Day Number and utc2 is the fraction of a day.
65 **
66 ** However, JD cannot unambiguously represent UTC during a leap
67 ** second unless special measures are taken. The convention in the
68 ** present function is that the JD day represents UTC days whether
69 ** the length is 86399, 86400 or 86401 SI seconds.
70 **
71 ** Applications should use the function eraDtf2d to convert from
72 ** calendar date and time of day into 2-part quasi Julian Date, as
73 ** it implements the leap-second-ambiguity convention just
74 ** described.
75 **
76 ** 2) The warning status "dubious year" flags UTCs that predate the
77 ** introduction of the time scale or that are too far in the
78 ** future to be trusted. See eraDat for further details.
79 **
80 ** 3) UT1-UTC is tabulated in IERS bulletins. It increases by exactly
81 ** one second at the end of each positive UTC leap second,
82 ** introduced in order to keep UT1-UTC within +/- 0.9s. n.b. This
83 ** practice is under review, and in the future UT1-UTC may grow
84 ** essentially without limit.
85 **
86 ** 4) The geographical coordinates are with respect to the ERFA_WGS84
87 ** reference ellipsoid. TAKE CARE WITH THE LONGITUDE SIGN: the
88 ** longitude required by the present function is east-positive
89 ** (i.e. right-handed), in accordance with geographical convention.
90 **
91 ** 5) The polar motion xp,yp can be obtained from IERS bulletins. The
92 ** values are the coordinates (in radians) of the Celestial
93 ** Intermediate Pole with respect to the International Terrestrial
94 ** Reference System (see IERS Conventions 2003), measured along the
95 ** meridians 0 and 90 deg west respectively. For many
96 ** applications, xp and yp can be set to zero.
97 **
98 ** Internally, the polar motion is stored in a form rotated onto
99 ** the local meridian.
100 **
101 ** 6) If hm, the height above the ellipsoid of the observing station
102 ** in meters, is not known but phpa, the pressure in hPa (=mB), is
103 ** available, an adequate estimate of hm can be obtained from the
104 ** expression
105 **
106 ** hm = -29.3 * tsl * log ( phpa / 1013.25 );
107 **
108 ** where tsl is the approximate sea-level air temperature in K
109 ** (See Astrophysical Quantities, C.W.Allen, 3rd edition, section
110 ** 52). Similarly, if the pressure phpa is not known, it can be
111 ** estimated from the height of the observing station, hm, as
112 ** follows:
113 **
114 ** phpa = 1013.25 * exp ( -hm / ( 29.3 * tsl ) );
115 **
116 ** Note, however, that the refraction is nearly proportional to
117 ** the pressure and that an accurate phpa value is important for
118 ** precise work.
119 **
120 ** 7) The argument wl specifies the observing wavelength in
121 ** micrometers. The transition from optical to radio is assumed to
122 ** occur at 100 micrometers (about 3000 GHz).
123 **
124 ** 8) It is advisable to take great care with units, as even unlikely
125 ** values of the input parameters are accepted and processed in
126 ** accordance with the models used.
127 **
128 ** 9) In cases where the caller wishes to supply his own Earth
129 ** ephemeris, Earth rotation information and refraction constants,
130 ** the function eraApco can be used instead of the present function.
131 **
132 ** 10) This is one of several functions that inserts into the astrom
133 ** structure star-independent parameters needed for the chain of
134 ** astrometric transformations ICRS <-> GCRS <-> CIRS <-> observed.
135 **
136 ** The various functions support different classes of observer and
137 ** portions of the transformation chain:
138 **
139 ** functions observer transformation
140 **
141 ** eraApcg eraApcg13 geocentric ICRS <-> GCRS
142 ** eraApci eraApci13 terrestrial ICRS <-> CIRS
143 ** eraApco eraApco13 terrestrial ICRS <-> observed
144 ** eraApcs eraApcs13 space ICRS <-> GCRS
145 ** eraAper eraAper13 terrestrial update Earth rotation
146 ** eraApio eraApio13 terrestrial CIRS <-> observed
147 **
148 ** Those with names ending in "13" use contemporary ERFA models to
149 ** compute the various ephemerides. The others accept ephemerides
150 ** supplied by the caller.
151 **
152 ** The transformation from ICRS to GCRS covers space motion,
153 ** parallax, light deflection, and aberration. From GCRS to CIRS
154 ** comprises frame bias and precession-nutation. From CIRS to
155 ** observed takes account of Earth rotation, polar motion, diurnal
156 ** aberration and parallax (unless subsumed into the ICRS <-> GCRS
157 ** transformation), and atmospheric refraction.
158 **
159 ** 11) The context structure astrom produced by this function is used
160 ** by eraAtioq, eraAtoiq, eraAtciq* and eraAticq*.
161 **
162 ** Called:
163 ** eraUtctai UTC to TAI
164 ** eraTaitt TAI to TT
165 ** eraUtcut1 UTC to UT1
166 ** eraEpv00 Earth position and velocity
167 ** eraPnm06a classical NPB matrix, IAU 2006/2000A
168 ** eraBpn2xy extract CIP X,Y coordinates from NPB matrix
169 ** eraS06 the CIO locator s, given X,Y, IAU 2006
170 ** eraEra00 Earth rotation angle, IAU 2000
171 ** eraSp00 the TIO locator s', IERS 2000
172 ** eraRefco refraction constants for given ambient conditions
173 ** eraApco astrometry parameters, ICRS-observed
174 ** eraEors equation of the origins, given NPB matrix and s
175 **
176 ** Copyright (C) 2013-2015, NumFOCUS Foundation.
177 ** Derived, with permission, from the SOFA library. See notes at end of file.
178 */
179 {
180  int j;
181  double tai1, tai2, tt1, tt2, ut11, ut12, ehpv[2][3], ebpv[2][3],
182  r[3][3], x, y, s, theta, sp, refa, refb;
183 
184 /* UTC to other time scales. */
185  j = eraUtctai(utc1, utc2, &tai1, &tai2);
186  if ( j < 0 ) return -1;
187  j = eraTaitt(tai1, tai2, &tt1, &tt2);
188  j = eraUtcut1(utc1, utc2, dut1, &ut11, &ut12);
189  if ( j < 0 ) return -1;
190 
191 /* Earth barycentric & heliocentric position/velocity (au, au/d). */
192  (void) eraEpv00(tt1, tt2, ehpv, ebpv);
193 
194 /* Form the equinox based BPN matrix, IAU 2006/2000A. */
195  eraPnm06a(tt1, tt2, r);
196 
197 /* Extract CIP X,Y. */
198  eraBpn2xy(r, &x, &y);
199 
200 /* Obtain CIO locator s. */
201  s = eraS06(tt1, tt2, x, y);
202 
203 /* Earth rotation angle. */
204  theta = eraEra00(ut11, ut12);
205 
206 /* TIO locator s'. */
207  sp = eraSp00(tt1, tt2);
208 
209 /* Refraction constants A and B. */
210  eraRefco(phpa, tc, rh, wl, &refa, &refb);
211 
212 /* Compute the star-independent astrometry parameters. */
213  eraApco(tt1, tt2, ebpv, ehpv[0], x, y, s, theta,
214  elong, phi, hm, xp, yp, sp, refa, refb, astrom);
215 
216 /* Equation of the origins. */
217  *eo = eraEors(r, s);
218 
219 /* Return any warning status. */
220  return j;
221 
222 /* Finished. */
223 
224 }
225 /*----------------------------------------------------------------------
226 **
227 **
228 ** Copyright (C) 2013-2015, NumFOCUS Foundation.
229 ** All rights reserved.
230 **
231 ** This library is derived, with permission, from the International
232 ** Astronomical Union's "Standards of Fundamental Astronomy" library,
233 ** available from http://www.iausofa.org.
234 **
235 ** The ERFA version is intended to retain identical functionality to
236 ** the SOFA library, but made distinct through different function and
237 ** file names, as set out in the SOFA license conditions. The SOFA
238 ** original has a role as a reference standard for the IAU and IERS,
239 ** and consequently redistribution is permitted only in its unaltered
240 ** state. The ERFA version is not subject to this restriction and
241 ** therefore can be included in distributions which do not support the
242 ** concept of "read only" software.
243 **
244 ** Although the intent is to replicate the SOFA API (other than
245 ** replacement of prefix names) and results (with the exception of
246 ** bugs; any that are discovered will be fixed), SOFA is not
247 ** responsible for any errors found in this version of the library.
248 **
249 ** If you wish to acknowledge the SOFA heritage, please acknowledge
250 ** that you are using a library derived from SOFA, rather than SOFA
251 ** itself.
252 **
253 **
254 ** TERMS AND CONDITIONS
255 **
256 ** Redistribution and use in source and binary forms, with or without
257 ** modification, are permitted provided that the following conditions
258 ** are met:
259 **
260 ** 1 Redistributions of source code must retain the above copyright
261 ** notice, this list of conditions and the following disclaimer.
262 **
263 ** 2 Redistributions in binary form must reproduce the above copyright
264 ** notice, this list of conditions and the following disclaimer in
265 ** the documentation and/or other materials provided with the
266 ** distribution.
267 **
268 ** 3 Neither the name of the Standards Of Fundamental Astronomy Board,
269 ** the International Astronomical Union nor the names of its
270 ** contributors may be used to endorse or promote products derived
271 ** from this software without specific prior written permission.
272 **
273 ** THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
274 ** "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
275 ** LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
276 ** FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
277 ** COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
278 ** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
279 ** BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
280 ** LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
281 ** CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
282 ** LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
283 ** ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
284 ** POSSIBILITY OF SUCH DAMAGE.
285 **
286 */
void eraPnm06a(double date1, double date2, double rnpb[3][3])
Definition: pnm06a.c:3
int eraUtctai(double utc1, double utc2, double *tai1, double *tai2)
Definition: utctai.c:3
double eraSp00(double date1, double date2)
Definition: sp00.c:3
void eraBpn2xy(double rbpn[3][3], double *x, double *y)
Definition: bpn2xy.c:3
double eraEra00(double dj1, double dj2)
Definition: era00.c:3
int eraApco13(double utc1, double utc2, double dut1, double elong, double phi, double hm, double xp, double yp, double phpa, double tc, double rh, double wl, eraASTROM *astrom, double *eo)
Definition: apco13.c:3
void eraApco(double date1, double date2, double ebpv[2][3], double ehp[3], double x, double y, double s, double theta, double elong, double phi, double hm, double xp, double yp, double sp, double refa, double refb, eraASTROM *astrom)
Definition: apco.c:3
void eraRefco(double phpa, double tc, double rh, double wl, double *refa, double *refb)
Definition: refco.c:3
int eraTaitt(double tai1, double tai2, double *tt1, double *tt2)
Definition: taitt.c:3
double eraS06(double date1, double date2, double x, double y)
Definition: s06.c:3
int eraUtcut1(double utc1, double utc2, double dut1, double *ut11, double *ut12)
Definition: utcut1.c:3
int eraEpv00(double date1, double date2, double pvh[2][3], double pvb[2][3])
Definition: epv00.c:3
double eraEors(double rnpb[3][3], double s)
Definition: eors.c:3