FACT++  1.0
s00.c
Go to the documentation of this file.
1 #include "erfa.h"
2 
3 double eraS00(double date1, double date2, double x, double y)
4 /*
5 ** - - - - - - -
6 ** e r a S 0 0
7 ** - - - - - - -
8 **
9 ** The CIO locator s, positioning the Celestial Intermediate Origin on
10 ** the equator of the Celestial Intermediate Pole, given the CIP's X,Y
11 ** coordinates. Compatible with IAU 2000A precession-nutation.
12 **
13 ** Given:
14 ** date1,date2 double TT as a 2-part Julian Date (Note 1)
15 ** x,y double CIP coordinates (Note 3)
16 **
17 ** Returned (function value):
18 ** double the CIO locator s in radians (Note 2)
19 **
20 ** Notes:
21 **
22 ** 1) The TT date date1+date2 is a Julian Date, apportioned in any
23 ** convenient way between the two arguments. For example,
24 ** JD(TT)=2450123.7 could be expressed in any of these ways,
25 ** among others:
26 **
27 ** date1 date2
28 **
29 ** 2450123.7 0.0 (JD method)
30 ** 2451545.0 -1421.3 (J2000 method)
31 ** 2400000.5 50123.2 (MJD method)
32 ** 2450123.5 0.2 (date & time method)
33 **
34 ** The JD method is the most natural and convenient to use in
35 ** cases where the loss of several decimal digits of resolution
36 ** is acceptable. The J2000 method is best matched to the way
37 ** the argument is handled internally and will deliver the
38 ** optimum resolution. The MJD method and the date & time methods
39 ** are both good compromises between resolution and convenience.
40 **
41 ** 2) The CIO locator s is the difference between the right ascensions
42 ** of the same point in two systems: the two systems are the GCRS
43 ** and the CIP,CIO, and the point is the ascending node of the
44 ** CIP equator. The quantity s remains below 0.1 arcsecond
45 ** throughout 1900-2100.
46 **
47 ** 3) The series used to compute s is in fact for s+XY/2, where X and Y
48 ** are the x and y components of the CIP unit vector; this series
49 ** is more compact than a direct series for s would be. This
50 ** function requires X,Y to be supplied by the caller, who is
51 ** responsible for providing values that are consistent with the
52 ** supplied date.
53 **
54 ** 4) The model is consistent with the IAU 2000A precession-nutation.
55 **
56 ** Called:
57 ** eraFal03 mean anomaly of the Moon
58 ** eraFalp03 mean anomaly of the Sun
59 ** eraFaf03 mean argument of the latitude of the Moon
60 ** eraFad03 mean elongation of the Moon from the Sun
61 ** eraFaom03 mean longitude of the Moon's ascending node
62 ** eraFave03 mean longitude of Venus
63 ** eraFae03 mean longitude of Earth
64 ** eraFapa03 general accumulated precession in longitude
65 **
66 ** References:
67 **
68 ** Capitaine, N., Chapront, J., Lambert, S. and Wallace, P.,
69 ** "Expressions for the Celestial Intermediate Pole and Celestial
70 ** Ephemeris Origin consistent with the IAU 2000A precession-
71 ** nutation model", Astron.Astrophys. 400, 1145-1154 (2003)
72 **
73 ** n.b. The celestial ephemeris origin (CEO) was renamed "celestial
74 ** intermediate origin" (CIO) by IAU 2006 Resolution 2.
75 **
76 ** McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003),
77 ** IERS Technical Note No. 32, BKG (2004)
78 **
79 ** Copyright (C) 2013-2015, NumFOCUS Foundation.
80 ** Derived, with permission, from the SOFA library. See notes at end of file.
81 */
82 {
83 /* Time since J2000.0, in Julian centuries */
84  double t;
85 
86 /* Miscellaneous */
87  int i, j;
88  double a, w0, w1, w2, w3, w4, w5;
89 
90 /* Fundamental arguments */
91  double fa[8];
92 
93 /* Returned value */
94  double s;
95 
96 /* --------------------- */
97 /* The series for s+XY/2 */
98 /* --------------------- */
99 
100  typedef struct {
101  int nfa[8]; /* coefficients of l,l',F,D,Om,LVe,LE,pA */
102  double s, c; /* sine and cosine coefficients */
103  } TERM;
104 
105 /* Polynomial coefficients */
106  static const double sp[] = {
107 
108  /* 1-6 */
109  94.00e-6,
110  3808.35e-6,
111  -119.94e-6,
112  -72574.09e-6,
113  27.70e-6,
114  15.61e-6
115  };
116 
117 /* Terms of order t^0 */
118  static const TERM s0[] = {
119 
120  /* 1-10 */
121  {{ 0, 0, 0, 0, 1, 0, 0, 0}, -2640.73e-6, 0.39e-6 },
122  {{ 0, 0, 0, 0, 2, 0, 0, 0}, -63.53e-6, 0.02e-6 },
123  {{ 0, 0, 2, -2, 3, 0, 0, 0}, -11.75e-6, -0.01e-6 },
124  {{ 0, 0, 2, -2, 1, 0, 0, 0}, -11.21e-6, -0.01e-6 },
125  {{ 0, 0, 2, -2, 2, 0, 0, 0}, 4.57e-6, 0.00e-6 },
126  {{ 0, 0, 2, 0, 3, 0, 0, 0}, -2.02e-6, 0.00e-6 },
127  {{ 0, 0, 2, 0, 1, 0, 0, 0}, -1.98e-6, 0.00e-6 },
128  {{ 0, 0, 0, 0, 3, 0, 0, 0}, 1.72e-6, 0.00e-6 },
129  {{ 0, 1, 0, 0, 1, 0, 0, 0}, 1.41e-6, 0.01e-6 },
130  {{ 0, 1, 0, 0, -1, 0, 0, 0}, 1.26e-6, 0.01e-6 },
131 
132  /* 11-20 */
133  {{ 1, 0, 0, 0, -1, 0, 0, 0}, 0.63e-6, 0.00e-6 },
134  {{ 1, 0, 0, 0, 1, 0, 0, 0}, 0.63e-6, 0.00e-6 },
135  {{ 0, 1, 2, -2, 3, 0, 0, 0}, -0.46e-6, 0.00e-6 },
136  {{ 0, 1, 2, -2, 1, 0, 0, 0}, -0.45e-6, 0.00e-6 },
137  {{ 0, 0, 4, -4, 4, 0, 0, 0}, -0.36e-6, 0.00e-6 },
138  {{ 0, 0, 1, -1, 1, -8, 12, 0}, 0.24e-6, 0.12e-6 },
139  {{ 0, 0, 2, 0, 0, 0, 0, 0}, -0.32e-6, 0.00e-6 },
140  {{ 0, 0, 2, 0, 2, 0, 0, 0}, -0.28e-6, 0.00e-6 },
141  {{ 1, 0, 2, 0, 3, 0, 0, 0}, -0.27e-6, 0.00e-6 },
142  {{ 1, 0, 2, 0, 1, 0, 0, 0}, -0.26e-6, 0.00e-6 },
143 
144  /* 21-30 */
145  {{ 0, 0, 2, -2, 0, 0, 0, 0}, 0.21e-6, 0.00e-6 },
146  {{ 0, 1, -2, 2, -3, 0, 0, 0}, -0.19e-6, 0.00e-6 },
147  {{ 0, 1, -2, 2, -1, 0, 0, 0}, -0.18e-6, 0.00e-6 },
148  {{ 0, 0, 0, 0, 0, 8,-13, -1}, 0.10e-6, -0.05e-6 },
149  {{ 0, 0, 0, 2, 0, 0, 0, 0}, -0.15e-6, 0.00e-6 },
150  {{ 2, 0, -2, 0, -1, 0, 0, 0}, 0.14e-6, 0.00e-6 },
151  {{ 0, 1, 2, -2, 2, 0, 0, 0}, 0.14e-6, 0.00e-6 },
152  {{ 1, 0, 0, -2, 1, 0, 0, 0}, -0.14e-6, 0.00e-6 },
153  {{ 1, 0, 0, -2, -1, 0, 0, 0}, -0.14e-6, 0.00e-6 },
154  {{ 0, 0, 4, -2, 4, 0, 0, 0}, -0.13e-6, 0.00e-6 },
155 
156  /* 31-33 */
157  {{ 0, 0, 2, -2, 4, 0, 0, 0}, 0.11e-6, 0.00e-6 },
158  {{ 1, 0, -2, 0, -3, 0, 0, 0}, -0.11e-6, 0.00e-6 },
159  {{ 1, 0, -2, 0, -1, 0, 0, 0}, -0.11e-6, 0.00e-6 }
160  };
161 
162 /* Terms of order t^1 */
163  static const TERM s1[] ={
164 
165  /* 1-3 */
166  {{ 0, 0, 0, 0, 2, 0, 0, 0}, -0.07e-6, 3.57e-6 },
167  {{ 0, 0, 0, 0, 1, 0, 0, 0}, 1.71e-6, -0.03e-6 },
168  {{ 0, 0, 2, -2, 3, 0, 0, 0}, 0.00e-6, 0.48e-6 }
169  };
170 
171 /* Terms of order t^2 */
172  static const TERM s2[] ={
173 
174  /* 1-10 */
175  {{ 0, 0, 0, 0, 1, 0, 0, 0}, 743.53e-6, -0.17e-6 },
176  {{ 0, 0, 2, -2, 2, 0, 0, 0}, 56.91e-6, 0.06e-6 },
177  {{ 0, 0, 2, 0, 2, 0, 0, 0}, 9.84e-6, -0.01e-6 },
178  {{ 0, 0, 0, 0, 2, 0, 0, 0}, -8.85e-6, 0.01e-6 },
179  {{ 0, 1, 0, 0, 0, 0, 0, 0}, -6.38e-6, -0.05e-6 },
180  {{ 1, 0, 0, 0, 0, 0, 0, 0}, -3.07e-6, 0.00e-6 },
181  {{ 0, 1, 2, -2, 2, 0, 0, 0}, 2.23e-6, 0.00e-6 },
182  {{ 0, 0, 2, 0, 1, 0, 0, 0}, 1.67e-6, 0.00e-6 },
183  {{ 1, 0, 2, 0, 2, 0, 0, 0}, 1.30e-6, 0.00e-6 },
184  {{ 0, 1, -2, 2, -2, 0, 0, 0}, 0.93e-6, 0.00e-6 },
185 
186  /* 11-20 */
187  {{ 1, 0, 0, -2, 0, 0, 0, 0}, 0.68e-6, 0.00e-6 },
188  {{ 0, 0, 2, -2, 1, 0, 0, 0}, -0.55e-6, 0.00e-6 },
189  {{ 1, 0, -2, 0, -2, 0, 0, 0}, 0.53e-6, 0.00e-6 },
190  {{ 0, 0, 0, 2, 0, 0, 0, 0}, -0.27e-6, 0.00e-6 },
191  {{ 1, 0, 0, 0, 1, 0, 0, 0}, -0.27e-6, 0.00e-6 },
192  {{ 1, 0, -2, -2, -2, 0, 0, 0}, -0.26e-6, 0.00e-6 },
193  {{ 1, 0, 0, 0, -1, 0, 0, 0}, -0.25e-6, 0.00e-6 },
194  {{ 1, 0, 2, 0, 1, 0, 0, 0}, 0.22e-6, 0.00e-6 },
195  {{ 2, 0, 0, -2, 0, 0, 0, 0}, -0.21e-6, 0.00e-6 },
196  {{ 2, 0, -2, 0, -1, 0, 0, 0}, 0.20e-6, 0.00e-6 },
197 
198  /* 21-25 */
199  {{ 0, 0, 2, 2, 2, 0, 0, 0}, 0.17e-6, 0.00e-6 },
200  {{ 2, 0, 2, 0, 2, 0, 0, 0}, 0.13e-6, 0.00e-6 },
201  {{ 2, 0, 0, 0, 0, 0, 0, 0}, -0.13e-6, 0.00e-6 },
202  {{ 1, 0, 2, -2, 2, 0, 0, 0}, -0.12e-6, 0.00e-6 },
203  {{ 0, 0, 2, 0, 0, 0, 0, 0}, -0.11e-6, 0.00e-6 }
204  };
205 
206 /* Terms of order t^3 */
207  static const TERM s3[] ={
208 
209  /* 1-4 */
210  {{ 0, 0, 0, 0, 1, 0, 0, 0}, 0.30e-6, -23.51e-6 },
211  {{ 0, 0, 2, -2, 2, 0, 0, 0}, -0.03e-6, -1.39e-6 },
212  {{ 0, 0, 2, 0, 2, 0, 0, 0}, -0.01e-6, -0.24e-6 },
213  {{ 0, 0, 0, 0, 2, 0, 0, 0}, 0.00e-6, 0.22e-6 }
214  };
215 
216 /* Terms of order t^4 */
217  static const TERM s4[] ={
218 
219  /* 1-1 */
220  {{ 0, 0, 0, 0, 1, 0, 0, 0}, -0.26e-6, -0.01e-6 }
221  };
222 
223 /* Number of terms in the series */
224  const int NS0 = (int) (sizeof s0 / sizeof (TERM));
225  const int NS1 = (int) (sizeof s1 / sizeof (TERM));
226  const int NS2 = (int) (sizeof s2 / sizeof (TERM));
227  const int NS3 = (int) (sizeof s3 / sizeof (TERM));
228  const int NS4 = (int) (sizeof s4 / sizeof (TERM));
229 
230 /*--------------------------------------------------------------------*/
231 
232 /* Interval between fundamental epoch J2000.0 and current date (JC). */
233  t = ((date1 - ERFA_DJ00) + date2) / ERFA_DJC;
234 
235 /* Fundamental Arguments (from IERS Conventions 2003) */
236 
237 /* Mean anomaly of the Moon. */
238  fa[0] = eraFal03(t);
239 
240 /* Mean anomaly of the Sun. */
241  fa[1] = eraFalp03(t);
242 
243 /* Mean longitude of the Moon minus that of the ascending node. */
244  fa[2] = eraFaf03(t);
245 
246 /* Mean elongation of the Moon from the Sun. */
247  fa[3] = eraFad03(t);
248 
249 /* Mean longitude of the ascending node of the Moon. */
250  fa[4] = eraFaom03(t);
251 
252 /* Mean longitude of Venus. */
253  fa[5] = eraFave03(t);
254 
255 /* Mean longitude of Earth. */
256  fa[6] = eraFae03(t);
257 
258 /* General precession in longitude. */
259  fa[7] = eraFapa03(t);
260 
261 /* Evaluate s. */
262  w0 = sp[0];
263  w1 = sp[1];
264  w2 = sp[2];
265  w3 = sp[3];
266  w4 = sp[4];
267  w5 = sp[5];
268 
269  for (i = NS0-1; i >= 0; i--) {
270  a = 0.0;
271  for (j = 0; j < 8; j++) {
272  a += (double)s0[i].nfa[j] * fa[j];
273  }
274  w0 += s0[i].s * sin(a) + s0[i].c * cos(a);
275  }
276 
277  for (i = NS1-1; i >= 0; i--) {
278  a = 0.0;
279  for (j = 0; j < 8; j++) {
280  a += (double)s1[i].nfa[j] * fa[j];
281  }
282  w1 += s1[i].s * sin(a) + s1[i].c * cos(a);
283  }
284 
285  for (i = NS2-1; i >= 0; i--) {
286  a = 0.0;
287  for (j = 0; j < 8; j++) {
288  a += (double)s2[i].nfa[j] * fa[j];
289  }
290  w2 += s2[i].s * sin(a) + s2[i].c * cos(a);
291  }
292 
293  for (i = NS3-1; i >= 0; i--) {
294  a = 0.0;
295  for (j = 0; j < 8; j++) {
296  a += (double)s3[i].nfa[j] * fa[j];
297  }
298  w3 += s3[i].s * sin(a) + s3[i].c * cos(a);
299  }
300 
301  for (i = NS4-1; i >= 0; i--) {
302  a = 0.0;
303  for (j = 0; j < 8; j++) {
304  a += (double)s4[i].nfa[j] * fa[j];
305  }
306  w4 += s4[i].s * sin(a) + s4[i].c * cos(a);
307  }
308 
309  s = (w0 +
310  (w1 +
311  (w2 +
312  (w3 +
313  (w4 +
314  w5 * t) * t) * t) * t) * t) * ERFA_DAS2R - x*y/2.0;
315 
316  return s;
317 
318 }
319 /*----------------------------------------------------------------------
320 **
321 **
322 ** Copyright (C) 2013-2015, NumFOCUS Foundation.
323 ** All rights reserved.
324 **
325 ** This library is derived, with permission, from the International
326 ** Astronomical Union's "Standards of Fundamental Astronomy" library,
327 ** available from http://www.iausofa.org.
328 **
329 ** The ERFA version is intended to retain identical functionality to
330 ** the SOFA library, but made distinct through different function and
331 ** file names, as set out in the SOFA license conditions. The SOFA
332 ** original has a role as a reference standard for the IAU and IERS,
333 ** and consequently redistribution is permitted only in its unaltered
334 ** state. The ERFA version is not subject to this restriction and
335 ** therefore can be included in distributions which do not support the
336 ** concept of "read only" software.
337 **
338 ** Although the intent is to replicate the SOFA API (other than
339 ** replacement of prefix names) and results (with the exception of
340 ** bugs; any that are discovered will be fixed), SOFA is not
341 ** responsible for any errors found in this version of the library.
342 **
343 ** If you wish to acknowledge the SOFA heritage, please acknowledge
344 ** that you are using a library derived from SOFA, rather than SOFA
345 ** itself.
346 **
347 **
348 ** TERMS AND CONDITIONS
349 **
350 ** Redistribution and use in source and binary forms, with or without
351 ** modification, are permitted provided that the following conditions
352 ** are met:
353 **
354 ** 1 Redistributions of source code must retain the above copyright
355 ** notice, this list of conditions and the following disclaimer.
356 **
357 ** 2 Redistributions in binary form must reproduce the above copyright
358 ** notice, this list of conditions and the following disclaimer in
359 ** the documentation and/or other materials provided with the
360 ** distribution.
361 **
362 ** 3 Neither the name of the Standards Of Fundamental Astronomy Board,
363 ** the International Astronomical Union nor the names of its
364 ** contributors may be used to endorse or promote products derived
365 ** from this software without specific prior written permission.
366 **
367 ** THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
368 ** "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
369 ** LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
370 ** FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
371 ** COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
372 ** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
373 ** BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
374 ** LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
375 ** CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
376 ** LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
377 ** ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
378 ** POSSIBILITY OF SUCH DAMAGE.
379 **
380 */
#define ERFA_DJ00
Definition: erfam.h:87
double eraFae03(double t)
Definition: fae03.c:3
double eraFapa03(double t)
Definition: fapa03.c:3
double eraFal03(double t)
Definition: fal03.c:3
int i
Definition: db_dim_client.c:21
#define ERFA_DAS2R
Definition: erfam.h:60
double eraS00(double date1, double date2, double x, double y)
Definition: s00.c:3
double eraFaom03(double t)
Definition: faom03.c:3
double eraFad03(double t)
Definition: fad03.c:3
double eraFaf03(double t)
Definition: faf03.c:3
double eraFalp03(double t)
Definition: falp03.c:3
#define ERFA_DJC
Definition: erfam.h:81
TT t
Definition: test_client.c:26
double eraFave03(double t)
Definition: fave03.c:3